
92 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

A High-Throughput Hardware Accelerator
for Lossless Compression of a

DDR4 Command Trace
Jiwoong Choi, Boyeal Kim, Hyun Kim , Member, IEEE, and Hyuk-Jae Lee , Member, IEEE

Abstract— In a memory system, understanding how the host
is stressing the memory is important to improve memory per-
formance. Accordingly, the need for the analysis of memory
command trace, which the memory controller sends to the
dynamic random access memory, has increased. However, the size
of this trace is very large; consequently, a high-throughput
hardware (HW) accelerator that can efficiently compress these
data in real time is required. This paper proposes a high-
throughput HW accelerator for lossless compression of the
command trace. The proposed HW is designed in a pipeline
structure to process Huffman tree generation, encoding, and
stream merge. To avoid the HW cost increase owing to high-
throughput processing, a Huffman tree is efficiently implemented
by utilizing static random access memory-based queues and
bitmaps. In addition, variable length stream merge is performed
at a very low cost by reducing the HW wire width using the
mathematical properties of Huffman coding and processing the
metadata and the Huffman codeword using FIFO separately.
Furthermore, to improve the compression efficiency of the
DDR4 memory command, the proposed design includes two
preprocessing operations, the “don’t care bits override” and
the “bits arrange,” which utilize the operating characteristics of
DDR4 memory. The proposed compression architecture with such
preprocessing operations achieves a high throughput of 8 GB/s
with a compression ratio of 40.13% on average. Moreover, the
total HW resource per throughput of the proposed architecture
is superior to the previous implementations.

Index Terms— Block Huffman, field-programmable gate
array (FPGA), high-throughput hardware (HW) design, lossless
compression, memory command trace analysis.

I. INTRODUCTION

OWING to the increasing demand for big data and neural
networks, the role of dynamic random access memory

(DRAM) has become increasingly important and the memory
bandwidth (BW) has rapidly increased. To understand how
the host stresses the DRAM system and how the memory
is vulnerable under certain situations, analyzing the memory

Manuscript received April 13, 2018; revised July 19, 2018; accepted
August 27, 2018. Date of publication September 26, 2018; date of current
version December 28, 2018. This work was supported in part by the Ministry
of Trade, Industry, and Energy under Grant 10080613, in part by the Korea
Semiconductor Research Consortium Support Program for the development of
the future semiconductor device, and in part by SK Hynix Inc. (Corresponding
author: Hyun Kim.)

J. Choi, B. Kim, and H.-J. Lee are with the Inter-University Semiconduc-
tor Research Center, Department of Electrical and Computer Engineering,
Seoul National University, Seoul 08826, South Korea (e-mail: jwchoi@
capp.snu.ac.kr; bykim@capp.snu.ac.kr; hyuk_jae_lee@capp.snu.ac.kr).

H. Kim is with the Department of Electrical and Information Engineering,
Seoul National University of Science and Technology, Seoul 01811,
South Korea (e-mail: hyunkim@seoultech.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2018.2869663

access pattern [1] of how the system controls the DRAM
is necessary. Memory performance depends on the memory
access patterns [2], and memory trace analysis for these access
patterns has been actively conducted by memory manufactur-
ers to improve the DRAM performance [3]. However, as the
memory command trace data have a throughput of 32 B/cycle
based on the most commonly used DDR4 memory, the data
size to be collected for analysis is very large [4]. As the
cost of storing and analyzing such large amounts of data is
considerably high, and the memory BW to be transferred
in real time to the storage space is also very large; various
compression studies [5]–[9] have been undertaken to reduce
the trace data size.

For an efficient trace data compression, the following three
conditions should be satisfied. First, lossless compression is
essential as the loss of memory command trace data should
not occur. Second, a hardware (HW) design with high speed
and high throughput is required for compressing on-the-fly
data with a high BW of 32 B/cycle in the high-speed system
environment above 250 MHz. As data BW and operating
frequency are gradually increasing in the memory system,
high-throughput processing of 8 GB/s is generally required.
This characteristic is even more important in recent years
because memory structure such as high BW memory [10]
is spotlighted for supporting the rapid increase in the
amount of data. Therefore, trace analysis system essentially
requires an HW-based compression accelerator instead of a
software (SW)-based compression method. It is noteworthy
that the SW-based compression is much slower than the
HW-based compression, which degrades the overall system
performance [11]. Third, HW cost and complexity should be
low while maintaining high compression efficiency. In other
words, the tradeoff between compression efficiency and HW
resource must be carefully considered.

Lossless compression is classified into two categories:
dictionary-based method and statistical method. The
dictionary-based method, which is represented by the
Lempel–Ziv series [12]–[15], compresses the data using the
location information of the previous data. This method shows
a relatively high compression ratio but is disadvantageous in
that it requires large HW resources and complexity because
the dictionary table must be created continuously for each
input data by checking the dependence and location with
previous data. On the other hand, the statistical method based
on entropy, which is represented by the Huffman coding [16],

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0001-6811-9647

CHOI et al.: HIGH-THROUGHPUT HW ACCELERATOR FOR LOSSLESS COMPRESSION OF A DDR4 COMMAND TRACE 93

constructs a tree with the frequency of symbol occurrence
and compresses data by allocating the codeword according
to the tree. This method can be implemented with relatively
low complexity, but it shows a relatively low compression
ratio. To take advantages of each method and to compensate
for the disadvantages of each method, lossless compression
schemes combining various compression algorithms have
been widely studied [17]–[20], and the HW implementation of
these lossless compression techniques has also been actively
studied [21]–[24].

Nunez and Jones [21] propose an HW architecture of the
X-MatchPro algorithm that compresses data at a throughput
of 1.6 Gbit/s with high HW scalability. Lin et al. [22], [23]
propose an HW structure that combines parallel dictionary
Lempel–Ziv–Welch (PDLZW) and dynamic Huffman coding
[25]. It offers the advantage of lower HW complexity and
better compression efficiency than the dynamic Huffman. Fow-
ers et al. [24] propose the HW architecture of the DEFLATE
algorithm [17] that shows relatively high-throughput process-
ing of 5.6 GB/s with high HW scalability. All these previous
studies in [21]–[24] use Huffman coding, but they are not an
optimal Huffman coding. Nunez and Jones [21] and Fowers
et al. [24] used a predetermined tree structure; they cannot
compress data while changing the tree structure according to
the data. In case of Lin et al. [22], [23], they cannot process
compression and tree formation at the same time because they
build an approximated tree structure on an offline process.
Thus, the compression ratio is inevitably sacrificed. Further-
more, the operating frequency of these previous schemes is
relatively low and except [24], they can only process the input
data with a small BW, rendering it difficult to process high-
throughput data of 8 GB/s. This means that these previous
schemes are incomplete in terms of compression efficiency and
HW complexity/cost.

Herein, to compensate for this drawback, the tradeoff
between compression efficiency and HW cost is carefully
considered through the efficient pipeline processing of block-
based compression and HW-optimized design techniques.
More specifically, this paper proposes an HW compression
accelerator architecture capable of high-throughput processing
based on the block Huffman coding [26]. The block Huffman
coding is a relatively simple statistical compression method
that processes Huffman coding by dividing the input data
into blocks. Although the compression efficiency of the block
Huffman is slightly lower than that of the original Huffman
coding, the two-pass operation in the original Huffman coding
can be performed by one-pass operation through the block-
based pipeline structure. Moreover, because the frequency of
the symbol occurrence is limited by the block size, the worst
case of the Huffman codeword length can be significantly
reduced [27]. Therefore, it is possible to drastically reduce
the HW resources and process the high-throughput on-the-
fly data compression. In the HW implementation of Huffman
coding, the Huffman tree formation and merge processing
of variable length coding are very difficult. To address these
problems, the proposed HW architecture efficiently generates
a new tree every time according to the input data using static
random access memory (SRAM)-based queues and bitmaps

and processes the variable length stream at a low cost using
FIFO and HW wire width optimization. All of these processes
are pipelined to achieve a high throughput of 8 GB/s. In
addition, as the Huffman tree is generated for every block,
it has a higher compression ratio than that of the predefined
Huffman tree and approximated Huffman tree. Consequently,
the proposed HW is excellent in terms of the tradeoff between
HW cost and throughput. From these reasons, in this paper,
block Huffman coding, which satisfies the second (i.e., high
throughput) and third (i.e., low HW cost) conditions mentioned
above, has been selected for memory trace compression.

Although block Huffman coding satisfies other conditions
perfectly, it cannot satisfy the condition that it should achieve
high compression efficiency, which is a part of the third
condition mentioned earlier. Therefore, in this paper, to further
enhance the compression ratio for the memory command
trace data, two preprocessing methods, i.e., “don’t care bits
override” on the device deselect commands, and “bits arrange”
on the command data, are proposed. These schemes utilize the
operating characteristics of the DDR4 memory. It is notewor-
thy that the proposed preprocessing techniques are compatible
with the block Huffman coding because the complexity of the
block Huffman coding is very low. Finally, this paper proposes
a high-throughput HW accelerator of lossless compression
with the high compression ratio that meets all three conditions
mentioned earlier. The proposed HW exhibits an excellent
compression ratio of 40.13% on average and its total HW
resource per throughput is superior to the previous studies. It is
noteworthy that the BW reduction of the memory command
leads to the power reduction in the DRAM memory accesses.

The remainder of this paper is organized as follows.
Section II describes the various Huffman coding schemes.
Section III presents the proposed HW accelerator architecture,
implementation issues, and preprocessing methods. Section IV
compares the proposed system with other studies and demon-
strates the superiority of the proposed compression HW.
Section V concludes this paper.

II. BACKGROUND

Huffman coding [16], a tree-based lossless data compression
technique is the most representative entropy coding method.
It is widely used in various fields requiring compressions such
as systems-on-a-chip design [28] and image processing [29].
Huffman coding requires information on the frequency of each
symbol in advance. The tree is constructed using the frequency
of each symbol, and the most common symbol is in the upper
node of the tree and expressed as the shortest codeword.
However, Huffman coding cannot be applied to a continuous
source stream because it cannot construct a Huffman tree for
compressing an input stream unless the information for the
entire stream is provided. To solve this problem, dynamic
Huffman coding [25] has been proposed. This method can
create a Huffman tree dynamically while the data are being
inputted, even though the frequency information of the symbol
is not provided in advance. In other words, this scheme
can construct a tree by one pass. However, the complexity
is too high because the tree must be relocated every time

94 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

the symbol is input and, consequently, it is not suitable for
HW implementation.

To overcome the drawbacks of dynamic Huffman coding,
block Huffman coding [26] has been proposed. This method
can cope with the continuous input stream while maintaining
the simplicity of Huffman coding. It processes the input stream
in a block unit and applies Huffman coding to each block. The
advantage of this scheme is that high-throughput compression
is possible with low HW complexity because block processing
and Huffman coding are performed independently. Huffman
coding belongs to variable length coding and, consequently,
the codeword length of each symbol is different depending
on the frequency information of the symbol. Therefore, in the
worst case of the conventional Huffman coding [16], an 8-bit
symbol is represented by a codeword of 256 bits. However,
block Huffman coding can significantly reduce the worst case
Huffman codeword length because the frequency of symbols is
limited to the block size [27]. The longest Huffman codeword
length is expressed as follows:

1

FK+3
< p <

1

FK+2
. (1)

In the source data, the smallest probability value is defined
as p, and F means the Fibonacci sequence value at the
corresponding index. For example, if the block size of block
Huffman coding is 16 kB, the probability value of the least-
appearing symbol is 1/16K, and the K value satisfying (1)
is 19. In other words, the worst case Huffman codeword length
of block Huffman coding is 19 bits, which is considerably
smaller than the worst case 256 bits of Huffman coding [16].
Owing to the reduced worst case of codeword length, the
HW cost for variable length stream merge can be significantly
reduced. In this regard, block Huffman coding is suitable for
a low-cost HW accelerator of lossless compression with high
throughput. An efficient implementation of block Huffman
coding is presented in Section III-B.

However, as block Huffman coding divides data into block
units, it creates a code tree using temporal locality rather than
a whole. Therefore, block Huffman coding generally has a
lower compression ratio than conventional Huffman coding.
To compensate for these drawbacks, a more efficient system
can be implemented by allocating additional resources to vari-
ous preprocessing operations, taking advantage of that the HW
resource of block Huffman coding is much smaller than that
of conventional Huffman implementations. The preprocessing
can reflect the characteristics of the input data and, thus,
it is expected to achieve a very high compression efficiency.
Section III-C discusses the preprocessing techniques that can
be used to improve the compression ratio of memory command
trace data, which are the target data of this paper.

III. HIGH-PERFORMANCE LOSSLESS COMPRESSION

A. Overview of the Proposed Lossless Compression
Hardware

Fig. 1 shows the overall structure of the proposed HW
design. It consists of three parts: block Huffman, parallel
stream merge, and preprocessing.

Fig. 1. Overall structure of the proposed hardware design.

The block Huffman module consists of a buffer, a Huffman
front part, and a Huffman back part, as shown in Fig. 2.
In the Huffman front part, the frequency count module cal-
culates the symbol frequency of the input data and the sorting
module arranges the symbols in the frequency order by merge
sort. In the Huffman back part, a Huffman tree is formed
using the symbols and frequencies sorted in the Huffman front
part. In this process, the module uses SRAM-based queues
and bitmaps appropriately to form the Huffman tree and
the Huffman codeword effectively. A parallel stream merge
module packs the output streams of four parallel compres-
sion machines into one stream. It consists of the metadata,
intramerge, intermerge, and stream out module. In the meta-
data module, symbol and frequency information are packed
into the single stream because they are needed to construct
the tree at the decoding process. The intramerge module
merges the eight variable length streams from the single
compression machine into the single stream using shifters
and OR operations. The intermerge module packs the meta-
data and intramerge streams into the single stream by shifters
and OR operations. The stream out module slices the final
compressed stream from the intermerge module to a certain
size and sends it to the final output. This stream merge module
is essential for variable length coding but requires tremendous
HW cost for high-throughput data processing. To address this
drawback, herein, the parallel stream merge module efficiently
pipelines these merge processes and optimizes the HW wire
width using the mathematical properties of Huffman cod-
ing, to enable high-throughput data processing with a very
low HW cost. Consequently, the proposed HW accelerator
performs lossless data compression with a high throughput
of 8 GB/s and achieves excellent HW cost per throughput
performance. Furthermore, it can preserve the compression
ratio of optimal Huffman coding because it generates the new
Huffman tree continuously according to the input data. This
low-cost HW design of lossless compression, which maintains
high compression efficiency and high throughput, is the first
contribution of this paper and the implementation details of
the proposed HW design are presented in Section III-B.

Even if the block Huffman coding module is implemented
efficiently, compressing the DDR4 command trace data using
Huffman coding results in very low compression efficiency
because the DDR4 command trace data have a high entropy

CHOI et al.: HIGH-THROUGHPUT HW ACCELERATOR FOR LOSSLESS COMPRESSION OF A DDR4 COMMAND TRACE 95

Fig. 2. Architecture of Huffman machine in block Huffman module. It only represents the data path, and the unit of wire is bit. Gray is implemented as
SRAM. Buffer is a single port SRAM, and the others are dual port SRAMs.

owing to their complex structure and Huffman coding gen-
erally has a relatively lower compression ratio [30]–[32]
than arithmetic coding [33] or dictionary-based coding. It is
noteworthy that the pattern distribution of the DDR4 command
trace data is irregular because these data consist of a combi-
nation of addresses and control signals and the information
contained in each signal differs depending on the command
type [34]. Herein, to achieve the high compression ratio for
the DDR4 command trace data, two preprocessing schemes,
the “don’t care bits override” and the “bits arrange,” which
utilize the operating characteristics of the DDR4 memory,
are proposed. The don’t care bits override module can lower
the entropy of data by overriding the don’t care bits on the
device deselect command to a value of 0 or 1. The bits
arrange module can lower the entropy of data by dividing the
memory command data composed of 32 bits into four groups
of high correlation bits and obtain high compression ratio by
compressing each partitioned data separately. It is noteworthy
that the memory command data are divided into four groups
because the block Huffman coding module compresses the
memory command data in units of 8-bit symbols. These
preprocessing modules are the second contribution of this
paper and a detailed description of the preprocessing is covered
in Section III-C.

B. Hardware Implementation

1) Block Huffman Coding: Fig. 2 shows the HW architec-
ture of the Huffman machine in the block Huffman module.
The preprocessed data are stored in the buffer for a certain
block size, while it is sorted in the Huffman front-part module.
If the input data are sorted by frequency, the time complexity
of the tree composition [35] can be reduced from O(n log n)
to O(n) using two queues. To achieve this, the finite-state
machine (FSM) with six states, as shown in Fig. 3, is used.
As sorting is complete in the Huffman front part, the FSM
state moves from the IDLE to the INIT and the sorted symbols
and frequencies are stored in the first queue. After storing,
FSM goes to the EXTRACT state and dequeues two data
from each queue. Subsequently, in the COMPARE state,
two data with low frequency are determined from the four data
extracted from the queue. In the SELECT state, the symbol
with the lowest frequency is selected as the left child, and
the remaining is selected as the right child. If the frequencies
are the same, the symbol that appears later in the ascending
sort becomes the left child. Finally, in the INSERT state,

Fig. 3. FSM for block Huffman coding.

the parent data, which is the sum of the left child frequency
and the right child frequency, is stored in the second queue.
As the data stored in two queues becomes one, FSM returns
to the IDLE state. Otherwise, the operation above is repeated.
These processes are performed through the queue controller,
queues, and bitmap controller, as shown in Fig. 2.

An SRAM-based queue is used to obtain the left child, right
child, and parent data. The bitmap is used to efficiently allocate
the Huffman codeword to the obtained data. Fig. 4 shows an
example of the Huffman code table formation using a bitmap.
After sorting in the Huffman front-part module, the FSM state
moves from IDLE to INIT and the bitmap table is initialized
during that state. Fig. 4(a) shows the results in the INIT
state. In the EXTRACT state, the bitmap values stored in
the SRAM are extracted using the left child and right child
symbols that were obtained at the previous FSM loop. This
process is controlled by the bitmap controller in Fig. 2. At the
COMPARE state, the left child bitmap and the right child
bitmap are used as addresses to form a code table. In the
code table, the left child and right child are assigned 0 and 1,
respectively. Furthermore, the code size of the corresponding
symbol is increased. In this process, the existing Huffman
code in the code table needs to be shifted and merged with
the new value before being stored in the code table. Because
these operations are difficult to be processed in a single cycle,
the code table is designed to process these operations during
four cycles of COMPARE, SELECT, INSERT, and EXTRACT
considering the FSM state that determines left child and right
child through a queue. In other words, up to four of Huffman
codes can be formed during four cycles on one dual port
SRAM through pipeline processing. Therefore, the code table
of the proposed HW is implemented with 64 dual port SRAM
(each dual port SRAM consists of 4×19 bits) so that the worst
case of the Huffman code formation (i.e., 256 symbols) can be
processed in parallel. Fig. 4 (b)–(d) shows the code allocation
results for each next COMPARE state. In the SELECT state,
the OR result of the left child bitmap and the right child bitmap

96 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

Fig. 4. Example of a Huffman code table formation. (a) Results in the INIT
state. (b)–(d) Code allocation results for each next COMPARE state.

is updated in the bitmap table. Only the bitmap corresponding
to the right child is updated because the left child symbol
no longer appears in the queues. Thus, the SRAM-based
bitmap can represent the tree structure effectively and create
an HW-efficient Huffman code table. These processes are
performed through the bitmap controller, bitmap OR, bitmap
table, and code table, as shown in Fig. 2.

All of these processes are pipelined to achieve high through-
put. The input data are stored using a triple buffer, and the
generated Huffman code table is stored using a double buffer
called a tree. In the encoding, eight symbols must be processed
per cycle; therefore, one tree consists of four SRAMs. As the
tree storage is completed, the Huffman codeword is extracted
from the SRAM called tree using the input data value stored
in the buffer. As a result, the proposed block Huffman coding
is very well designed compared to the previous design [36]
due to the proposed techniques (i.e., using the SRAM-based
queues and bitmaps and processing each process in a pipelined
manner).

2) Parallel Stream Merge: Fig. 5 shows the compressed
output stream format of the proposed HW. Mi is the metadata

Fig. 5. Compressed output stream format. The certain size is the product of
the block size and the number of Huffman machines.

Fig. 6. Architecture of intermerge module in parallel stream merge.

of the i th Huffman machine module. Ci j is the compressed
data of the j th cycle of the i th Huffman machine after the
first output is started. Fig. 6 shows the structure of intermerge
module in the proposed parallel stream merge to construct
such a compressed stream efficiently. A Huffman codeword is
generated every cycle, while the metadata are generated for
several cycles depending on the symbol that appears in the
specified block size. In other words, a Huffman codeword
is generated for a certain cycle, whereas the metadata are
generated during a variable cycle according to the number of
symbols used in the block. The timing characteristics of the
metadata and Huffman codeword must be considered for high-
throughput processing. Accordingly, the metadata characteris-
tics of the narrow width-long cycle must be converted to wide
width-short cycle. To achieve this, the metadata are stored in
the SRAM. Therefore, a total of four metadata can be easily
controlled by storing them into one FIFO. These processes are
performed through the metadata arbiter and metadata FIFO,
as shown in Fig. 6.

For the Huffman codeword processing, actual codewords
generated by the Huffman machine module among the fixed
width wire must be judged and only the actual codewords are
to be merged. As shown in Fig. 6, the shift amount calcu-
lator computes each codeword location using the codeword
size information, and the pipeline shifter shifts codewords.
Then, OR operation merges several codewords. The intramerge
module also contains the corresponding logic. The intramerge
module in one Huffman machine merges codewords through
seven shifters because eights symbols are processed in par-
allel. In the intermerge module, three shifters are used to
merge each intramerged codeword, as four Huffman machines
operate in parallel. The merging module including the shifter
is fully pipelined for high-throughput processing and can
be implemented at a low cost because the HW wire width
is considerably reduced by the block unit compression.
The resizer reduces the output merge stream once more to fit
the FIFO width. Furthermore, the resized data are stored in the

CHOI et al.: HIGH-THROUGHPUT HW ACCELERATOR FOR LOSSLESS COMPRESSION OF A DDR4 COMMAND TRACE 97

data FIFOs. By using the FIFOs, the Huffman codeword path
can be easily controlled considering the timing of the metadata
path. Two FIFOs are used for the I/O throughput control.

An arbitration module is required to pack the metadata and
the Huffman codeword, as shown in Fig. 5. This process is
performed through the merge arbiter in the intermerge module
of Fig. 6. When metadata are packed into the output stream,
the merged Huffman codeword stream must be blocked. After
packing four metadata into the output stream, the merged
Huffman codeword stream stored in the FIFOs is packed.
Finally, the final compressed stream is stored in the buffer
inside the stream out module according to the format in Fig. 5.
The stream out module outputs the final compressed stream
in a specific size.

C. Preprocessing for DDR4 Memory Command Data

1) Don’t Care Bits Override: There are various com-
mands [34] depending on the memory operation. In particular,
read, write, precharge, and device deselect occupy most of the
DDR4 memory command. Among these commands, the device
deselect command occupies a considerable portion compared
to the other commands because it is necessary to complete
the operations that require more than a single clock cycle
such as bank active, burst read, and refresh. In the device
deselect command, the CKE0, CKE1, CS0, CS1, CS2, and
CS3 signals among the 32 bits have high (i.e., “1”) values
and the remaining 26 bits have don’t care (i.e., “×”) bits.
Therefore, 26 don’t care bits can be arbitrarily designated
to lower the entropy of the trace data because the device
deselect command can be judged by only 6 bits (i.e., CKE0,
CKE1, CS0, CS1, CS2, and CS3 signals). In other words,
the compression efficiency can be enhanced by increasing
the appearance frequency of a specific symbol by arbitrarily
overriding the don’t care bits to 0 or 1. It is noteworthy that it
is impossible to exclude the don’t care bits because the output
stream from lossless compression is composed of variable
length. If the don’t care bits in the device deselect command
are excluded in the encoding process, the symbol values of the
data are changed and, consequently, the location of the device
deselect command is unknown in the decoding process, and
it is impossible to judge which commands correspond to the
decoded symbol values. Although a flag or bitmap for the
location of device deselect commands can be used to solve
this problem, this results in a significant additional overhead
in terms of HW resource and latency.

To increase the data bias, it is important to efficiently
determine a 0 or 1 to the don’t care bits in the device deselect
command. For the operation of the DDR4 memory, the read,
write, and precharge commands occupy most of the entire
command. Therefore, the proposed algorithm is applied to bit
signals ACT, RAS, CAS, and WE, which are fixed to 1 or 0 in
these commands (i.e., read, write, and precharge commands)
and have don’t care bits in the device deselect command.
Table I shows the overriding values for the don’t care bits
of the device deselect command. ACT and RAS signals are
overridden by 1 because they are more frequently fixed to 1 in
read, write, and precharge commands, whereas CAS and WE

TABLE I

DON’T CARE BITS OVERRIDE

signals are overridden by 0 because they are more frequently
fixed to 0 in these commands. The compression efficiency
can be increased by lowering the data entropy through a pre-
processing process that efficiently handles such don’t care bits.

2) Bits Arrange: To further enhance the compression effi-
ciency, the correlation of the data to be compressed together
in Huffman coding must be increased. To efficiently compress
the command data of 32 bits through block Huffman coding,
which compresses by 8-bit symbol units, this paper proposes
a method to rearrange 32 bits of data utilizing the correlation
between each bit and group these data in units of 8 bits to
use as the block Huffman coding input. Consequently, these
partitioned data have much lower entropy than the original
command data, and hence, better compression efficiency can
be achieved in block Huffman coding.

For data grouping, mutual information, which is an index
indicating the degree of correlation, is used and can be
expressed as follows:

I (X;Y) = H (X) + H (Y) − H (X, Y) (2)

where H (X) and H (Y) are the entropy values of random
variables X and Y , respectively; H (X , Y) denotes the joint
entropy of the variables set. It is noteworthy that the higher
the correlation, the higher is the mutual information value.
In the proposed scheme, it is necessary to calculate the mutual
information between all bits to divide 32 bits of command data
into units of 8 bits and group the bits with high correlation
together. However, as the number of possible combinations is
large (about 4.15 ×1015), it is impossible to obtain all mutual
information in practice. To efficiently address this problem,
this paper applies a heuristic method to obtain the mutual
information in a 1-bit unit, and then group the bits with
high correlation using the spectral clustering scheme [37] and
K-medoids scheme [38], commonly used in machine-learning
clustering. If the mutual information is obtained in 1-bit units,
mutual information of 32 × 32 matrix type can be obtained.
However, this mutual information that must be tied together
for large edges cannot be applied directly to existing clustering
methods because existing clustering methods are grouping
for low edges; thus, matrix data conversion is necessary.
Spectral clustering [37] is an appropriate method to allow
mapping of high-affinity data to low values and, consequently,
mutual information after spectral clustering can be applied to
the existing clustering method. The mutual information data
processed by the spectral clustering are nonvector space data,
and theoretically, the best representation of the object set in
the nonvector space is widely known as a medoid [39]. Also,
the number of clusters for “bits arrange” is fixed to four.
Moreover, the hard clustering method in which one object

98 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

TABLE II

BITS ARRANGE

should not belong to several clusters is required for mutual
information data. Considering all these features, k-medoids, an
improved version of the well-known k-means algorithm [40],
is the best clustering algorithm for the data containing mutual
information. It is noteworthy that it exhibits excellent clus-
tering performance [41] and has been widely used to obtain
optimal results [42], [43]. By applying these machine learning
techniques to the memory command data, the optimal clus-
tering result in the data extracted for the experiment can be
obtained. Table II shows the results of the bits arrange scheme
by clustering. As shown in Fig. 1, when the input data enter
the preprocessing module, the entropy is reduced first through
the don’t care bits override module, and the command bits
are divided into four groups, as shown in Table II. The result
of this grouping is finally input to the block Huffman coding
module and compressed in each module.

IV. EXPERIMENTAL RESULTS

In this section, the HW implementation results and a
compression ratio of the proposed system are compared
with those of the previous studies to show the superior-
ity of the proposed HW design. To acquire the experi-
mental data set, an intermediate board is placed between
the CPU and memory, and the memory command trace
data are extracted by hijacking. This paper utilized the
DDR4 synchronous dynamic random access memory from
SK Hynix [44], which is commercialized and actively used,
and the diagnostic application for trace extraction is operated
on server-class computers of major vendors. These applica-
tions contain most of the trends that memory can experience
(i.e., from worst cases to general cases). Furthermore, enough
traces (i.e., sufficient capacity) including various character-
istics have been extracted. In other words, the workloads
used in the experiments reflect most of the memory operation
characteristics, and consequently, it can be said that it is
sufficient to evaluate the performance of various studies.

A. Experimental Results of the Proposed Design

The proposed HW design is implemented in the
Vivado 2017 design tool and operated on the Xilinx
Virtex Ultrascale VCU108 field-programmable gate array
(FPGA) [45] at the frequency of 250 MHz. The block size
for the block Huffman coding in the proposed HW design
is 16 kB.

Table III shows the implementation results for each module
in Fig. 1. The preprocessing module uses 0.02% of the look-
up tables (LUTs) and 0.02% of registers in the configurable
logic block among all resources. SRAM is not used. Although
this module does not occupy a large part in the whole system,

TABLE III

IMPLEMENTATION RESULTS OF EACH MODULE

it shows a very high compression efficiency improvement
in the memory command trace data. For the block Huffman
module, 7.82% of the LUTs and 2.27% of the registers in
the FPGA are used. In addition to these resources, it requires
3.29% of the SRAM in the FPGA as it utilizes SRAM-based
queues, bitmaps, and code table. This means that block
Huffman coding is efficiently implemented using only a
small amount of LUTs and registers by utilizing SRAMs
appropriately. In a parallel stream merge, the proposed HW
structure only utilizes 2.27% of LUTs, 1.47% of registers, and
2.31% of SRAM with the reduction in wire width using the
mathematical properties of Huffman coding, data processing
by FIFO, and bit size resizing. In addition, no timing failure
occurred in the proposed HW design. It is noteworthy that
when processing variable length streams for a 32 B/cycle input
with the conventional Huffman coding [16], 8192 bits of wires
are required and, consequently, the usages of LUTs, registers,
and SRAM are 13.75%, 14.75%, and 11.4%, respectively,
which causes very large HW cost. In this case, negative slack
is also generated by the shifter for the merge and the logic
involved in selecting the metadata and Huffman codeword.
These results show that the proposed HW architecture
enables an efficient parallel stream merge processing at a
very low cost. In summary, the proposed HW architecture
utilizes 11.38% of LUTs, 4.76% of registers, and 5.6% of
SRAM. All modules do not use DSP. At 250 MHz, the worst
negative slack is 0.004 ns, the worst hold slack is 0.03 ns,
and no total negative slack and total hold slack were present.

Table IV shows the entropy results of the original data
(i.e., 512 MB) and the preprocessed data (i.e., 128 MB each).
The entropy is an indicator of how much data can be repre-
sented as small information. It is noteworthy that the smaller
the entropy of the data, the higher is the compression ratio.
In general, the memory trace data are organized according
to a complicated standard called JEDEC [34], and therefore,
the pattern distribution of the trace data is irregular and it has
a high entropy. The original entropy of the experimental data
has a high value of 0.827 on average owing to the various
characteristics of the DDR4 memory command trace data;
therefore, it is impossible to obtain high compression ratio.
However, using the two preprocessing techniques proposed
in Section III-C, the entropy can be reduced significantly.
The average entropy after “don’t care bits override” and “bits
arrange” are 0.610 and 0.607, respectively. By using both
methods together, the average entropy can be reduced to

CHOI et al.: HIGH-THROUGHPUT HW ACCELERATOR FOR LOSSLESS COMPRESSION OF A DDR4 COMMAND TRACE 99

TABLE IV

EXPERIMENTAL RESULTS IN TERMS OF THE ENTROPY

TABLE V

EXPERIMENTAL RESULTS FOR THE COMPRESSED SIZE

Fig. 7. Comparison results of the compression ratio.

0.391 for the four groups; consequently, a sufficiently high
compression ratio can be achieved using the block Huffman
coding. Table V shows the compressed size results of the
proposed method. The results show that the block Huffman
coding of 16-kB block size has a low compression ratio of
83.29% on average in raw data without preprocessing, but
has a high compression ratio of 40.13% on average after
preprocessing. In addition, the standard deviation between the
compressed results is also quite low. As a result, the proposed
design can obtain high compression ratio without being greatly
affected by the characteristics of the input data because it
adaptively forms the Huffman tree according to the input
data and utilizes two preprocessing methods that reflect the
operating characteristics of the DDR4 memory. It is notewor-
thy that this paper proposes the novel preprocessing schemes
focusing on the DDR4 memory command trace data, but
various preprocessing modules can be used with the block
Huffman coding depending on the target application.

B. Performance Comparison

To show the superior compression efficiency of the proposed
scheme, Fig. 7 shows the compression ratios of LZ77 [12],

Lempel–Ziv–Welch (LZW) [15], Huffman [16], block
Huffman [26], X-MatchPro [21], DEFLATE [17], Bzip2 [20],
and the proposed method. For a fair compression ratio
comparison, the block size of the proposed compression
method is set to 4 kB, which is the smallest block/dictionary
size of the previous compression algorithms. It is noteworthy
that the larger the block size, the higher is the compression
ratio. In addition, as the proposed HW architecture is
designed to process block sizes up to 16 kB to enhance
the compression efficiency, the compression ratio results
using the block size of 16 kB are also presented to show
the accurate performance of the proposed HW design. The
average compression ratios of the LZ77, LZW, Huffman
coding, block Huffman coding, X-MatchPro, DEFLATE,
and Bzip2 are 72.59%, 72.97%, 82.93%, 83.29%, 65.68%,
52.05%, and 49.12%, respectively. However, even with a 4-kB
block size, the average compression ratio of the proposed
method is 44.49%, which is higher than all other methods.
If the block size is 16 kB, the proposed method can obtain an
average compression ratio of 40.13%. Although Bzip2, which
is the combination of several transforms, run-length encoding,
and Huffman coding, has the highest compression ratio among
the previous methods, the proposed method shows better
compression ratio than Bzip2 despite the lower complexity.

Table VI shows the HW performance of the proposed HW
accelerator and other lossless compression HW designs. It is
noteworthy that the final target of the proposed HW design
is FPGA, not application specified integrated circuit, and the
previous studies also presented the LUT results based on the
FPGA implementation. Therefore, the usages of LUTs and
SRAMs are used to compare the HW complexity of each
design presented in the seventh and eighth rows, respectively.
In case of the power consumption in the ninth row, the power
consumption in logics is simulated on design compiler with
the Taiwan Semiconductor Manufacturing Company 65-nm
process and that in SRAMs is estimated based on the previous
study [46]. The HW complexity of the previous studies is
predicted based on the previous studies [21], [23], [47], [48].
The ratio of LUT usage of compressor and decompressor
is approximately 3:2 [47] and doubling the dictionary size
increases chip complexity by a factor of 1.5 [21]. Therefore,
the LUT of the compressor used by Nunez and Jones [21]
is estimated by applying these ratios to the total LUT
results in [21]. Next, the LUT of the compressor used by
Lin and Chang [23] is estimated using a power dissipation
of compression and decompression, which is approximately

100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

TABLE VI

COMPARISON RESULTS OF HARDWARE PERFORMANCE

1:1 ratio [23]. It should be noted that there is a proportional
relationship between the power dissipation and HW resources
of the modules which operate in the same operating environ-
ment [49]. In case of Fowers et al. [24], the LUT result of
the compressor is estimated from the adaptive logic module
(ALM) results in [24] based on the ratio that the ALM has a
density advantage of approximately 1.8 times the LUT [48].

For a fair comparison, the total HW cost including LUTs
and SRAMs is required. Because the LUTs and SRAMs
have different units, it is impossible to simply conduct a fair
comparison including both LUTs and SRAMs. To address
this difficulty, the tenth row of Table VI compares each
study by using the HW resources normalized by the number
of transistors in each LUT and SRAM. According to the
transistor-level design [50], [51], one LUT can be replaced
with a 34.5-bit SRAM to estimate the normalized HW
resource. Finally, as a tradeoff relationship exists between
HW resource and throughput, the performance is compared
by a normalized parameter, the total HW resource per
throughput, for a fair comparison with previous studies,
as shown in the last row of Table VI. It is noteworthy that
the HW design with the smaller values denotes better HW
designs because it requires less HW resources to achieve
the same performance. The results of Nunez and Jones [21],
Lin and Chang [23], and Fowers et al. [24] show 0.941, 1.179,
and 1.414, respectively, while the proposed HW has a very
low value of 0.684. As a result, the proposed HW architecture
has the highest compression efficiency of 40.13% and the best
HW resource per throughput performance compared to the
previous studies. These results shown in Fig. 7 and Table VI
demonstrate the excellence of the proposed HW design.

V. CONCLUSION

As memory command trace analysis becomes significant
in improving memory performance, memory command trace
compression is becoming increasingly important. In particular,
to support the rapid increase in the amount of data, the demand
for a high-throughput HW architecture of lossless compression
is increasing considerably. The two main contributions of
this paper are as follows. First, a low-cost HW design of
lossless compression, which maintains the high compression

efficiency and high throughput, is proposed. Experimental
results demonstrate that the proposed HW design has a much
better total HW resource per throughput than the previous
studies. Second, to further enhance the compression ratio for
the memory command trace data, two preprocessing methods,
the “don’t care bits override” and the “bits arrange,” which
utilize the operating characteristics of the DDR4 memory, are
proposed. Experimental results demonstrate that the proposed
schemes can achieve an excellent compression ratio of 40.13%
on average while maintaining a high throughput of 8 GB/s.
It is noteworthy that although this paper applies preprocessing
to the DDR4 memory command data, the proposed Huffman
HW design has a high scalability, which can be extended to
various applications by different preprocessing according to
the target data. Therefore, the proposed design is expected to
contribute greatly to the reduction in large amounts of data.

REFERENCES

[1] H. Choi, J. Lee, and W. Sung, “Memory access pattern-aware DRAM
performance model for multi-core systems,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., Apr. 2011, pp. 66–75.

[2] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proc. 27th Annu. Int. Symp. Comput.
Archit., May 2000, pp. 128–138.

[3] Y. Huang et al., “HMTT: A hybrid hardware/software tracing system for
bridging the DRAM access trace’s semantic gap,” ACM Trans. Archit.
Code Optim., vol. 11, no. 1, Feb. 2014, Art. no. 7.

[4] D.-I. Jeon, M.-K. Lee, J.-C. Kim, and K.-S. Chung, “Runtime memory
controller profiling with performance analysis for DRAM memory
controllers,” J. Circuits, Syst. Comput., vol. 27, no. 8, p. 1850126,
Nov. 2017.

[5] C. F. Kao, S. M. Huang, and I. J. Huang, “A hardware approach to real-
time program trace compression for embedded processors,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 54, no. 3, pp. 530–543, Mar. 2007.

[6] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan,
and N. B. Sam, “The VPC trace-compression algorithms,” IEEE Trans.
Comput., vol. 54, no. 11, pp. 1329–1344, Nov. 2005.

[7] K.-U. Irrgang and T. B. Preußer, “An LZ77-style bit-level compression
for trace data compaction,” in Proc. 25th Int. Conf. Field Program. Logic
Appl., Sep. 2015, pp. 1–4.

[8] V. Uzelac and A. Milenkovic, “A real-time program trace compressor
utilizing double move-to-front method,” in Proc. 46th ACM/IEEE Design
Automat. Conf., Nov. 2009, pp. 738–743.

[9] A. Milenkovic, V. Uzelac, M. Milenkovic, and M. Burtscher, “Caches
and predictors for real-time, unobtrusive, and cost-effective program
tracing in embedded systems,” IEEE Trans. Comput., vol. 60, no. 7,
pp. 992–1005, Jul. 2011.

[10] High Bandwidth Memory DRAM, JEDEC Standard JESD235A, 2015.

CHOI et al.: HIGH-THROUGHPUT HW ACCELERATOR FOR LOSSLESS COMPRESSION OF A DDR4 COMMAND TRACE 101

[11] B. Sukhwani, B. Abali, B. Brezzo, and S. Asaad, “High-throughput,
lossless data compresion on FPGAs,” in Proc. IEEE 19th Annu. Int.
Symp. Field-Program. Custom Comput. Mach., May 2011, pp. 113–116.

[12] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343,
May 1977.

[13] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Trans. Inf. Theory, vol. IT-24, no. 5,
pp. 530–536, Sep. 1978.

[14] J. A. Storer and T. G. Szymanski, “Data compression via textual
substitution,” J. ACM, vol. 29, no. 4, pp. 928–951, Oct. 1982.

[15] T. A. Welch, “A technique for high-performance data compression,”
IEEE Comput., vol. C-17, no. 6, pp. 8–19, Jun. 1984.

[16] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[17] L. P. Deutsch, DEFLATE Compressed Data Format Specification Version
1.3, document RFC 1951, May 1996.

[18] M. Burrows and D. Wheeler, “A block sorting lossless data compression
algorithm,” Digit. Equip. Corp., Maynard, MA, USA, Tech. Rep. 124,
1994.

[19] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, “A locally
adaptive data compression scheme,” Commun. ACM, vol. 29, no. 4,
pp. 320–330, Apr. 1986.

[20] J. Seward. (2010). Bzip2 Version 1.0.6. [Online]. Available: http://www.
bzip.org

[21] J. L. Nunez and S. Jones, “Gbit/s lossless data compression hardware,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3,
pp. 499–510, Jun. 2003.

[22] M. B. Lin, J. F. Lee, and G. E. Jan, “A lossless data compression and
decompression algorithm and its hardware architecture,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 9, pp. 925–936,
Sep. 2006.

[23] M. B. Lin and Y. Y. Chang, “A new architecture of a two-stage
lossless data compression and decompression algorithm,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 9, pp. 1297–1303,
Sep. 2009.

[24] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, “A scalable high-
bandwidth architecture for lossless compression on FPGAs,” in Proc.
IEEE 23rd Annu. Int. Symp. Field-Program. Custom Comput. Mach.,
May 2015, pp. 52–59.

[25] D. E. Knuth, “Dynamic Huffman coding,” J. Algorithms, vol. 6, no. 2,
pp. 163–180, Jun. 1985.

[26] M. A. Mannan and M. Kaykobad, “Block Huffman coding,” Comput.
Math. Appl., vol. 46, nos. 10–11, pp. 1581–1587, Nov. 2003.

[27] Y. S. Abu-Mostafa and R. J. McEliece, “Maximal codeword lengths in
Huffman codes,” Comput. Math. Appl., vol. 39, no. 11, pp. 129–134,
Oct. 2000.

[28] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An efficient
test vector compression scheme using selective Huffman coding,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 6,
pp. 797–806, Jun. 2003.

[29] J. H. Pujar and L. M. Kadlaskar, “A new lossless method of image
compression and decompression using Huffman coding techniques,”
J. Theor. Appl. Inf. Technol., vol. 15, no. 1, pp. 18–23, 2010.

[30] S. Shanmugasundaram and R. Lourdusamy, “A comparative study of text
compression algorithms,” Int. J. Wisdom Based Comput., vol. 1, no. 3,
pp. 68–76, Dec. 2011.

[31] S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain, “Data compression
methodologies for lossless data and comparison between algorithms,”
Int. J. Eng. Sci. Innov. Technol., vol. 2, no. 2, pp. 142–147, Mar. 2013.

[32] R. A. Bedruz and A. R. F. Quiros, “Comparison of Huffman algorithm
and Lempel-Ziv algorithm for audio, image and text compression,”
in Proc. Int. Conf. Humanoid, Nanotechnol., Inf. Technol., Commun.
Control, Environ. Manage. (HNICEM), Dec. 2015, pp. 1–6.

[33] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, Jun. 1987.

[34] DDR4 SDRAM, JEDEC Standard JESD79-4A, 2013.
[35] J. V. Leeuwen, “On the construction of Huffman trees,” in Proc. 3rd Int.

Colloq. Automata, Lang. Program., Jul. 1976, pp. 382–410.
[36] S. Rigler, W. Bishop, and A. Kennings, “FPGA-based lossless data

compression using Huffman and LZ77 algorithms,” in Proc. IEEE Can.
Conf. Elect. Comput. Eng., Apr. 2007, pp. 1235–1238.

[37] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proc. Adv. Neural Inf. Process. Syst., 2001,
pp. 849–856.

[38] J. Kaufman and P. J. Rousseeuw, “Clustering by means of medoids,” in
Statistical Data Analysis Based on the L1-Norm and Related Methods,
Y. Dodge, Ed. Amsterdam, The Netherlands: North Holland, 1987,
pp. 405–416.

[39] J. Zhou and J. Sander, “Data bubbles for non-vector data: Speeding-
up hierarchical clustering in arbitrary metric spaces,” in Proc. 29th Int.
Conf. Very Large Data Bases, Sep. 2003, pp. 452–463.

[40] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means
clustering algorithm,” Appl. Stat., vol. 28, no. 1, pp. 100–108, 1979.

[41] H.-S. Park, J.-S. Lee, and C.-H. Jun, “A K-means-like algorithm for
K-medoids clustering and its performance,” in Proc. Int. Conf. Comput.
Inf. Eng., Jan. 2006, pp. 102–117.

[42] N. Arbin, N. Suhaimi, N. Mokhtar, and Z. Othman, “Comparative
analysis between K-means and K-medoids for statistical clustering,”
in Proc. 3rd Int. Conf. Artif. Intell., Modelling Simulation (AIMS),
Dec. 2015, pp. 117–121.

[43] Y. Hamzaoui, M. Amnai, A. Choukri, and Y. Fakhri, “Novel clustering
method based on K-medoids and mobility metric,” Int. J. Interact.
Multimedia Artif. Intell., vol. 5, no. 1, pp. 29–33, Jun. 2018.

[44] DDR4 SDRAM Device Operation, SK Hynix Inc., Icheon, Korea, 2018.
[45] VCU108 Evaluation Board User Guide, Xilinx Inc., San Jose, CA, USA,

2017.
[46] E. Morifuji, D. Patil, M. Horowitz, and Y. Nishi, “Power optimization

for SRAM and its scaling,” IEEE Trans. Electron Devices, vol. 54, no. 4,
pp. 715–722, Apr. 2007.

[47] S. S. Naqvi, R. Naqvi, R. A. Riaz, and F. Siddiqui, “Optimized RTL
design and implementation of LZW algorithm for high bandwidth
applications,” Electr. Rev., Jan. 2011, pp. 279–285.

[48] Altera Corp., San Jose, CA, USA. FPGA Architecture WP-01003-1.0.
Accessed: Jun. 20, 2018. [Online]. Available: https://www.altera.com/
en_US/pdfs/literature/wp/wp-01003.pdf

[49] C. Cernazanu-Glavan, S. Fedeac, A. Amaricai-Boncalo, and M. Marcu,
“Energy profiling of FPGA designs,” in Proc. IEEE Int. Symp. Robot.
Sens. Environ., Oct. 2014, pp. 118–123.

[50] N. Azizi and F. N. Najm, “Look-up table leakage reduction for FPGAs,”
in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2005, pp. 186–189.

[51] T. Pi and P. J. Crotty, “FPGA lookup table with transmission gate
structure for reliable low-voltage operation,” U.S. Patent 6 667 635 B1,
Dec. 23, 2003.

Jiwoong Choi received the B.S. degree in electrical
and electronics engineering from Chung-Ang Uni-
versity, Seoul, South Korea, in 2015 and the M.S.
degree in electrical and computer engineering from
Seoul National University, Seoul, in 2017, where
he is currently working toward the Ph.D. degree in
electrical and computer engineering.

His current research interests include hardware
accelerator design, computer architecture, and
SoC design.

Boyeal Kim received the B.S. degree in electrical
and computer engineering from Seoul National Uni-
versity, Seoul, South Korea, in 2017, where he is cur-
rently working toward the integrated M.S. and Ph.D.
degrees in electrical and computer engineering.

His current research interests include high-
bandwidth memory, computer architecture, and hard-
ware accelerator design.

102 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

Hyun Kim (M’12) received the B.S., M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
South Korea, in 2009, 2011, and 2015, respectively.

From 2015 to 2018, he was a BK Assistant
Professor at the BK21 Creative Research Engi-
neer Development for IT, Seoul National University.
In 2018, he joined the Department of Electrical and
Information Engineering, Seoul National University
of Science and Technology, Seoul, where he is
currently an Assistant Professor. His current research

interests include algorithm, computer architecture, memory, and SoC design
for low-complexity multimedia applications, and deep neural networks.

Hyuk-Jae Lee (M’04) received the B.S. and
M.S. degrees in electronics engineering from Seoul
National University, Seoul, South Korea, in 1987 and
1989, respectively, and the Ph.D. degree in electrical
and computer Engineering from Purdue University,
West Lafayette, IN, USA, in 1996.

From 1998 to 2001, he was a Senior Compo-
nent Design Engineer at the Server and Workstation
Chipset Division, Intel Corporation, Hillsboro, OR,
USA. From 1996 to 1998, he was a Faculty Member
at the Department of Computer Science, Louisiana

Tech University, Ruston, LS, USA. In 2001, he joined the School of Electrical
Engineering and Computer Science, Seoul National University, where he is
currently a Professor. He is the Founder of Mamurian Design, Inc., Seoul,
a fabless SoC design house for multimedia applications. His current research
interests include computer architecture and SoC design for multimedia
applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

